Fusion of Multispectral Data Through Illumination-aware Deep Neural Networks for Pedestrian Detection
نویسندگان
چکیده
Multispectral pedestrian detection has received extensive attention in recent years as a promising solution to facilitate robust human target detection for around-the-clock applications (e.g. security surveillance and autonomous driving). In this paper, we demonstrate illumination information encoded in multispectral images can be utilized to significantly boost performance of pedestrian detection. A novel illumination-aware weighting mechanism is present to accurately depict illumination condition of a scene. Such illumination information is incorporated into two-stream deep convolutional neural networks to learn multispectral human-related features under different illumination conditions (daytime and nighttime). Moreover, we utilized illumination information together with multispectral data to generate more accurate semantic segmentation which are used to boost pedestrian detection accuracy. Putting all of the pieces together, we present a powerful framework for multispectral pedestrian detection based on multi-task learning of illumination-aware pedestrian detection and semantic segmentation. Our proposed method is trained end-to-end using a well-designed multi-task loss function and outperforms state-of-the-art approaches on KAIST multispectral pedestrian dataset.
منابع مشابه
Illumination-aware Faster R-CNN for Robust Multispectral Pedestrian Detection
Multispectral images of color-thermal pairs have shown more effective than a single color channel for pedestrian detection, especially under challenging illumination conditions. However, there is still a lack of studies on how to fuse the two modalities effectively. In this paper, we deeply compare six different convolutional network fusion architectures and analyse their adaptations, enabling ...
متن کاملMultispectral Pedestrian Detection using Deep Fusion Convolutional Neural Networks
Robust vision-based pedestrian detection is a crucial feature of future autonomous systems. Thermal cameras provide an additional input channel that helps solving this task and deep convolutional networks are the currently leading approach for many pattern recognition problems, including object detection. In this paper, we explore the potential of deep models for multispectral pedestrian detect...
متن کاملMultispectral Deep Neural Networks for Pedestrian Detection
Multispectral pedestrian detection is essential for around-the-clock applications, e.g., surveillance and autonomous driving. We deeply analyze Faster R-CNN for multispectral pedestrian detection task and then model it into a convolutional network (ConvNet) fusion problem. Further, we discover that ConvNet-based pedestrian detectors trained by color or thermal images separately provide compleme...
متن کاملA multi-scale convolutional neural network for automatic cloud and cloud shadow detection from Gaofen-1 images
The reconstruction of the information contaminated by cloud and cloud shadow is an important step in pre-processing of high-resolution satellite images. The cloud and cloud shadow automatic segmentation could be the first step in the process of reconstructing the information contaminated by cloud and cloud shadow. This stage is a remarkable challenge due to the relatively inefficient performanc...
متن کاملPedestrian Detection in RGB-D Data Using Deep Autoencoders
Corresponding Author: Pavel Vyacheslavovich Skribtsov PAWLIN Technologies Ltd, Dubna, Russia Email: [email protected] Abstract: Recent popularity of RGB-D sensors mostly comes from the fact that RGB-images and depth maps supplement each other in machine vision tasks, such as object detection and recognition. This article addresses a problem of RGB and depth data fusion for pedestrian detection. We...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1802.09972 شماره
صفحات -
تاریخ انتشار 2018